

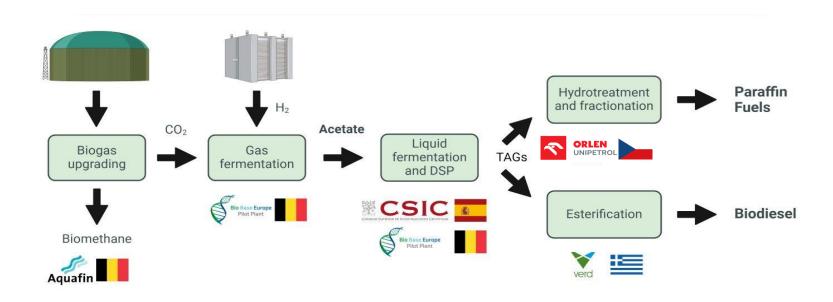
FUELPHORIA Demo 1

Stefano Rebecchi – Bio Base Europe Pilot Plant

FUELPHORIA 2nd Webinar - 4 December 2025

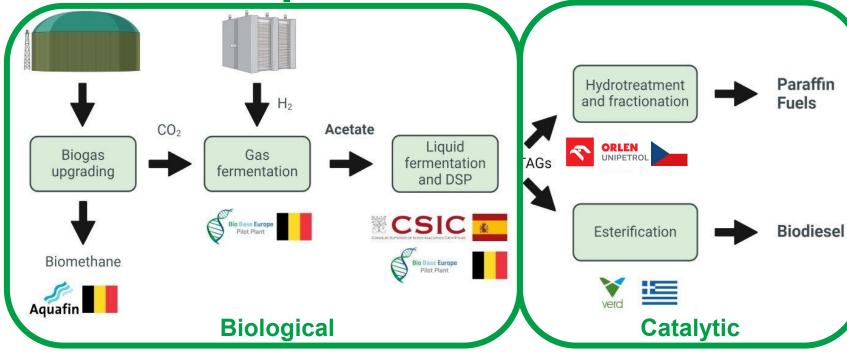
Overview of the demo

DEMO1: Hydrotreated and esterified TAGs production from CO2 derived from a biogas upgrading plant via a 2-step fermentation


Location: Belgium

Feedstock: CO₂ from a biogas plant

Involved technologies: gas fermentation, liquid fermentation, strain engineering, hydroprocessing,


esterification

End-products: liquid hydrocarbons for transport applications

Conversion processes and Innovations

2-step fermentation process

- Gas fermentation of Biogenic CO₂ to acetate
- Liquid fermentation to produce TAGs from bio-acetate

Upgrading

- Hydrotreatment
- Esterification

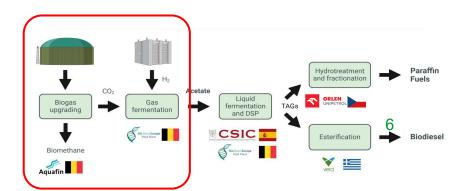
Innovations

- The development of an integrated scheme for the valorisation of biogenic CO₂ into advanced biofuels;
- (ii)
 Long and/or medium chain TAGs
 production from CO₂ via acetate will
 be demonstrated;
- (iii)
 The metabolic engineering strategies on oleaginous strains

Laboratory scale tests

Optimization of the Gas-substrate fermentation

Objectives:


- wild type anaerobic acetogenic bacteria
- development of a continuous fermentation process (lab scale)
- maximize productivity and acetate concentration (gas pressures and flow rates,
 CO₂/H₂ ratio, medium composition, ...)

Results:

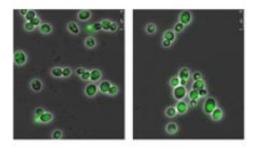
- 60 days of continuous fermentation
- CO₂ consumption rate >50%
- Robust process over long periods of time
- The process developed is ready to be scaled up to 150 L

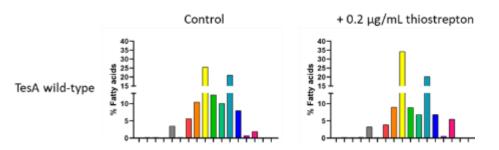
Development of oleaginous strains for TAG production

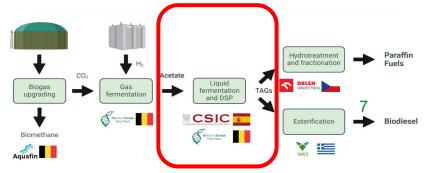
Objectives:

- use lipid producing strains: bacteria (*Rhodococcus*) and yeasts (*Yarrowia*)
- improve the production of lipids by increasing the transport and flux of carbon from acetate to TAGs

Results:


Yarrowia lipolytica

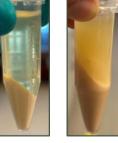

- 3 Yarrowia lipolytica strains have been produced and tested
- Increased consumption of acetate and production of TAGs


Rhodococcus jostii

different acetate concentrations have been tested in fed-batch

Optimization of the TAGs fermentation

Objectives:


- Use of an optimized strains to produce triaglycerides (TAGs)
- maximize titer (g/L) and productivity (g/L/h) by finetuning parameters such as pH, pO2, oxygen transfer rates, feed regimes, agitation, etc.
- optimization of the recovery and purification of the TAGs

Results:

- Yarrowia lipolytica and Rhodococcus jostii have been tested at 4L and 30L scale bioreactor
- Increased TAGs productivity and concentration
- Screening of various pretreatment and solvents resulted in an optimized DSP

protocol (>80% yield)

TAGs Oils Esterification

Initial Oil Characterization

- 1. H2O = 9.83% wt.
- 2. FFA = 2.89% wt.
- Water, solids & water-soluble materials= 10% V/V

Biodiesel Synthesis – Initial Experiments

- Pretreatment: Acid wash with H3PO4 solution
- 2. Acid Esterification: 70-80o C reflux reaction, 0.5% m/m H2SO4, 30% m/m CH3OH, 30 min.
- 3. Trans Esterification: 2-step reflux reaction at 60o C, 2.5% m/m CH3OK, 15% m/m CH3OH, 3hrs.
- 4. Final product washes: 3 simultaneous washes with (1) water, (2) acid water and (3) water, Centrifugal Separations

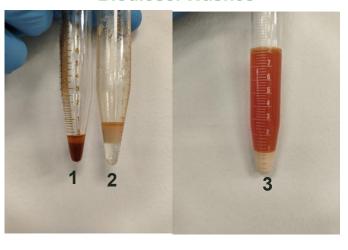
Results – Need Improving

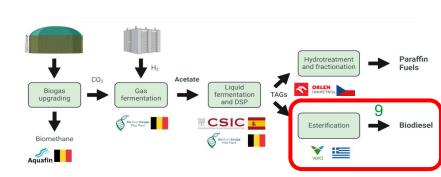
- Reaction Conversion= ~58%
- 2. Iodine Value= 15.11 Strong indication of high amounts of saturated methyl esters

Trans Esterification Results

Glycerol: 0,015%

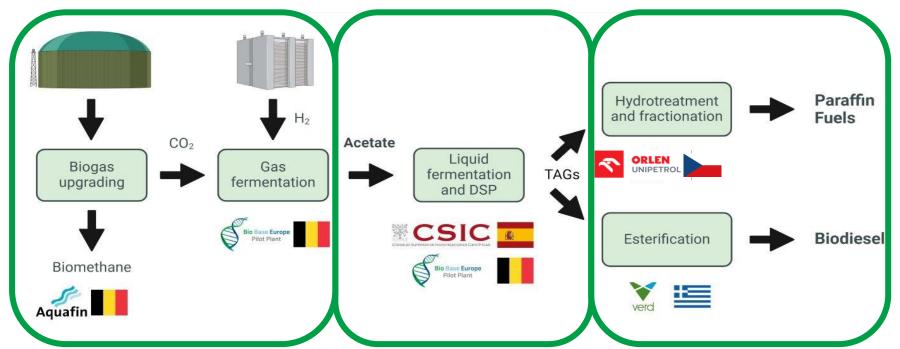
Monoglycerides: 4,81%


Diglycerides: 12.06%


Triglycerides: 41.86%

According to EN 14105

Biodiesel Washes



Upscale and challenges

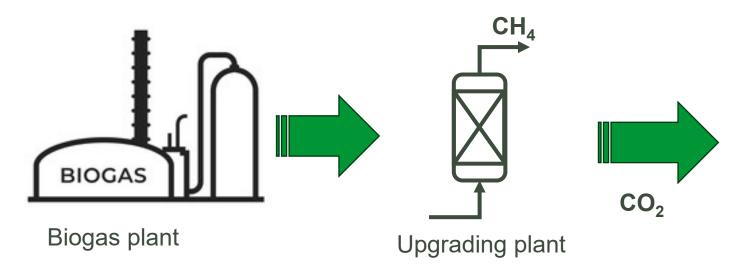
Scale-up and real demonstration of DEMO 1

Hydroprocessing tests of TAGs targeting to produce up to 250L of advanced paraffinic biofuels with potential use in transport.

Esterification tests aiming to produce up to 150L of advanced biofuel through

Gas fermentation

real Biogenic-CO₂ coming from biogas upgrading plant and real industrial conditions (AQUAFIN site).


TAGs fermentation

Scale-up of the TAGs fermentation and recovery, overall goal is to produce hundreds of kg (up to tonne) scale of purified microbial oil

Scale-up Gas fermentation

Mobile gas fermentation unit

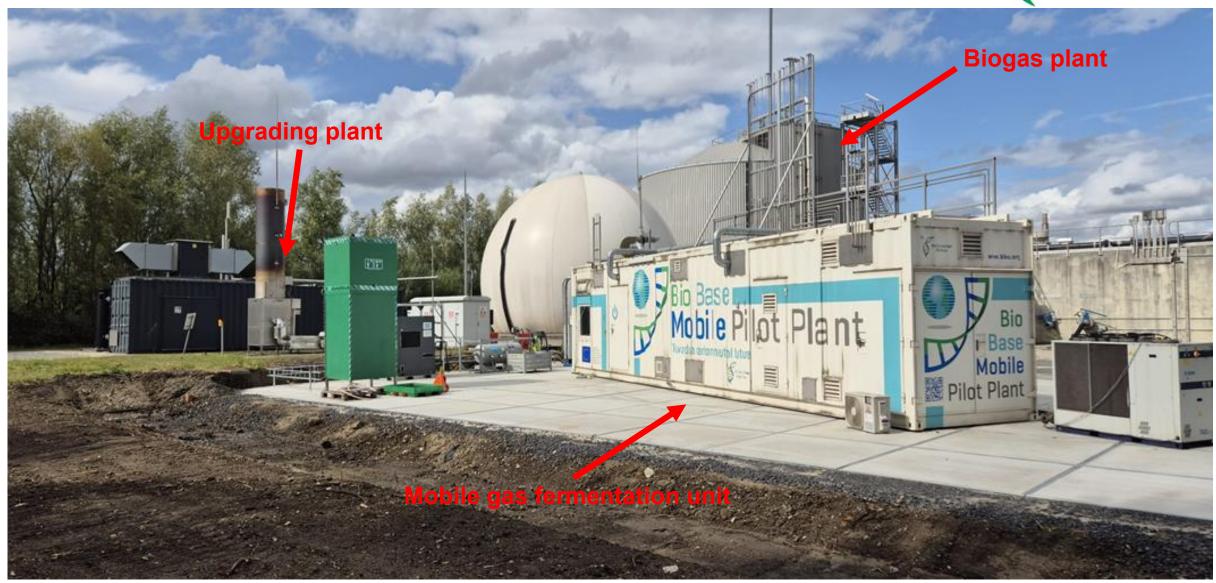
Bio Base Mobile Pilot Plant (BBMPP)

AQUAFIN's WWTP (Antwerp, Belgium)

Scale-up Gas fermentation

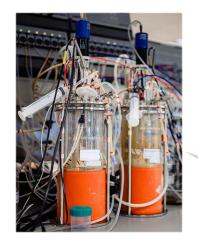
- Transportation
- Integration
- Commissioning

- Permits from the authorities
- Construction works



Scale-up Gas fermentation

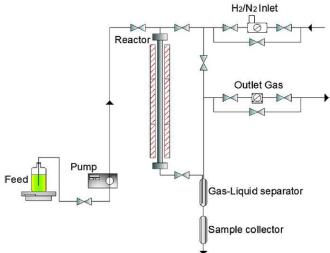
Future activities


Microbial oil (TAGs) production

Scale-up of:

- > TAGs fermentation
- > Recovery and purification of the TAGs (DSP)

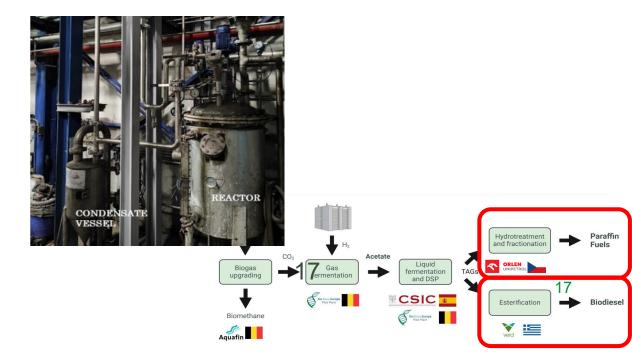
Production hundreds of kg (up to tonne) scale of purified microbial oil



TAGs upgrading

Hydrotreatment

- selection of a catalyst; based on catalyst properties and activity during the reaction
- scaling up of the process into bigger reactor
- Challenge will be also suitability of commercial catalyst for Fuelphoria Oil



Esterification

- Improve Conversion: Increase temperature, catalyst loading, retention time and Methanol/Oil
- Measure Non-Saponifiable Matter during initial Oil Characterization
- Scale up of the process to 250L scale pilot unit

About FUELPHORIA

FUELPHORIA is an EU-funded Innovation Action project working to establish sustainable, competitive, and secure value chains for advanced biofuels and renewable fuels of non-biological origin.

Coordinated by CERTH, the project will set up and test a portfolio of 9 complete value chains in Belgium, Greece, and Spain.

Project partners will also evaluate the environmental performance of the FUELPHORIA renewable fuels, design innovative business models to prepare their market entry, and explore their export potential through collaboration with Africa

Get in touch

Stefano Rebecchi, BBEPP

R&D engineer stefano.rebecchi@bbeu.org

Kostis Atsonios, CERTH
FUELPHORIA Project Coordinator
atsonios@certh.gr

Piero Valmassoi, Greenovate! Europe FUELPHORIA Communication Manager p.valmassoi@greenovate-europe.eu

