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Biomass and sustainable fransport

= Transport is responsible for about 25% of the EU's total CO, emissions

= The EU aims to reduce by 90% the greenhouse gas emissions from transport by 2050, compared
with 1990

= Biofuels are crucial for reducing emissions in the tfransport sector

= Major role on the so-called “hard-to-abate sectors” aviation and maritime decarbonization
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https://www.eea.europa.eu/signals-archived/signals-2022/infographics/greenhouse-gas-emissions-from-transport/view

Advanced biofuels production pathways
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Drop-in aviation and marine biofuels through a combined thermochemical —
biochemical pathway: the BioSFerA project

Development and validation of a novel biorefinery concept based on 2-step AF CERTH Project
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Drop-in aviation and marine biofuels through a combined thermochemical —
biochemical pathway: the BioSFerA project
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Drop-in aviation and marine biofuels through a combined thermochemical —
biochemical pathway: the BioSFerA project
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Drop-in aviation and marine biofuels through a combined thermochemical —
biochemical pathway: the BioSFerA project
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BioSFerA scale up and impact assessment

Methodology

TRL 3 TRL S

‘ BioSFerA experimental/pilot ‘ Upscaling design considerations &
activities models validated at pilot scale

Full-scale (200 MWTth) process
simulations of the integrated

BioSFerA concept

Full-scale
Heat & Mass balance calculations
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BioSFerA integrated concept
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> Utilization of the off-gas (unreacted gas) of the gas fermentation in the oxidizer of the DFBG unit - higher gasification
efficiency, avoidance of technical barriers related to internal gas recycle in the bioreactor (i.e. inerts/contaminants
accumulation)

> Internal hydrogen extraction (and supply to the hydrotreatment unit) from the off-gas of the anaerobic fermentation via
PSA (Pressure Swing Adsorption) - avoidance of such an energy/cost-consuming unit like an electrolyzer

» Air-driven autothermal reforming of syngas hydrocarbons instead of oxygen-driven, since in the absence of gas recycle in
the bioreactor, some nitrogen content in the reformed gas would not be a critical problem = avoidance of operational
costs related to external purchase of industrial oxygen




BioSFerA process flow diagram at industrial scale
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Full-scale (200 MW.,.) process simulations

> Energetic Fuel Efficiency (EFE) is the fraction of the chemical energy in the initial feedstock that is
transferred to the final fuels

» Carbon Utilization (CU) is the fraction of carbon in initial feedstock that is converted to the final fuels

> Liquid Fuel mass yield is the mass flow ratio of liquid fuels (products) to biomass feedstock (feed)

Parameter Unit Value (simulation output)
Feed (crushed bark) t/h 40.46
Liquid product (jet fuel) t/h 2.56
Liquid product (diesel) t/h 2.88
Cellular biomass (by-product) t/h 1.21
Electric power demand MWel 8.20
Energetic Fuel Efficiency (EFE) VA 35.60
Carbon Utilization (CU) % 25.40
Liquid Fuel mass yield (kg oquct/K9teed) T 13.44
Waste heat 37.4% Biogenic CO, 67.9%
Energy Balance Carbon Balance Wastewater L
Cellular biomass formation | 9.5% Cellular biomass formation | 5.6%
Liquid fuels (EFE) 35.6% Liquid fuels (CU) 25.4%




Techno-economic assessment

Business cases — Main results

Business case

Jet Fuel scenario

Marine fuel scenario

Microbial oil scenario

Total Capital Investment (€) 576,928,000 557,568,000 526,592,000
Annual operating costs (€/year) 49,984,760 49,509,560 48,749,240
Income from diesel (€/year) 14,475,024 - -
Income from cellular biomass (€/year) 6,288,716 6,288,716 6,288,716
Biomass feed (t/year) 301,295 301,295 301,295
Produced jet fuel (t/year) 32,435 - -
Produced diesel (t/year) 8,042 40,744 -
Produced microbial oil (t/year) - - 50,395
Minimum Jet Selling Price - MJSP (€/L) 1.83 - -
Minimum Diesel Selling Price - MDSP (€/1) - 1.71 -
Minimum Oil Selling Price - MOSP (€/L) - - 1.32




Techno-economic assessment

Benchmarking with the dominant biofuel (jet) technologies
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SAF is the most cost-competitive option and the only route so far that can consistently compete with conventional
jet fuel prices. The respective frend lines for the semi-commercialized Fischer-Tropsch (FT) and Alcohol-to-Jet (AtJ) routes lie well
within the range of 1.50-2.00 €/L.

» The obtained baseline MJSP of 1.83 €/L reveals the preliminary ability of the BioSFerA concept to be financially competitive since it is
within the range (1.50-2.00 €/1) of the dominant BtL technologies (FT & AtJ).

» The capital investment of the BioSFerA concept seems as demanding as for the other technologies, mainly due to the large required
number of bioreactors. Higher obtained productivities and concentrations for acetic acid/TAGs production can drastically reduce
the capital costs of the double-stage fermentation and upgrade the financial competitiveness of the concept.




Techno-economic assessment ok

Replication pre-feasibility studies in 4 EU countries
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Environmental assessment

Life Cycle Assessment (LCA) framework

Scope e
Evaluation of the environmental impact of 5 different scenarios | Catayst |
throughout their entire life cycle - different types of biomass prving process NiAlp05 Tiatet
feedstock and biorefinery locations are considered. . —Harvesting»| (FeISIOCK | Tansportof » T nermochemical

Size reduction

Methodology
Guidelines & modelling framework in accordance with the Synaas
European Renewable Energy Directive 2018/2001/EU (RED Il) & the o catdie
ISO 14040/44 Standards. e:rr::eeji?uiwmnElec‘tLricity Nm-foimﬁ%
— v o
B|0'I:(,::§r|tcal _TAGS_»Therm;;;stalytch

System boundaries
All stages of BioSFerA project are considered in the analysis;

o Feedstock pre-treatment stage (harvesting, drying, chopping) Investigated Scenarios
o Thermochemical part / biomass-to-syngas
o Compression stage / prior to fermentation process Finland Crushed bark
o Biological part / syngas-into-TAGs Greece — Case 1* Olive free pruning & organic waste
o Purification of TAGs & Thermocatalytic part / TAGs-into-liquid fuels (80/20 w/w DM)
Greece - Case 2 Olive tree pruning
ltaly Cereal straw

Spain Vineyard pruning
% Several KPIs are C(?'(?U'OTed — specific *Drying process is only included in Case 1 of Greek scenario (high
i..'i focus on GHG emissions moisture content of organic waste 70-75%)




Environmental assessment

LCA Results

Achievement
50-86 7% GHG emission savings are achieved compared to the
fossil fuel comparator (as defined in RED Il Directive).

Maijor findings &/

Results are strongly affected by the (a) electricity consumption
for the compression stage, (b) natural gas for the drying
process (organic waste scenario) & (c) nutrients utilization for

the fermentation.
BioSFerA LCA results are consistent & competitive with the
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Environmental assessment

Benchmarking with the dominant biofuel (jet) technologies
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» Conventional jet fuel produced from petroleum resources, has a carbon intensity within the range of 85-95 g CO2eq/MJ.

BioSFerA’'s measured carbon footprint lies in the range of 15.5 - 47.4 g CO2eq/MJ, achieving 50-86% GHG emission
savings compared to conventional jet fuel.
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Accelerating the sustainable production of advanced biofuels and RFNBOs - from
feedstock to end-use: the FUELPHORIA project

O
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Duration: 1/10/2023 — 30/09/2027 (48 Months)

Budget/ EU contribution: €11,144,321.30/ €9,678,598.55

A CERTH
8’@\8 « Coordinator: | @po~ fetanc
! K N AL¥  HELLAS
..... HPR ore .pe . e~
l[.]l + Beneficiaries: 22, Affiliated Entities: 3, Associated Partners: 1 (4

https://fuelphoria.eu/

&

OBJECTIVES

+ Demonstrate robust and cost-effective technological solutions for the production of advanced biofuels & RFNBOs
\ + Build a portfolio of sustainable, secure & complete Value Chains for advanced biofuels and RFNBOs from feedstock to
end use
@ +  Promote the exploitation of advanced biofuels and RFNBOs
+ by identifying barriers in value chains at EU level and in Africa
+ through policy recommendations at EU level
+ through new business and marketing concepts in Europe and Africa



https://fuelphoria.eu/

Accelerating the sustainable production of advanced biofuels and RFNBOs - from
feedstock to end-use: the FUELPHORIA project

Demos overview
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DEMO 1 description
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Expected results

« 75 kg biogenic CO2 will be converted into advanced liquid renewable fuel
- 30-day gas fermentation run with the mobile unit: 75 kg CO, in fotal

« Up to 20% of CO, conversion at the fermenter

*  Hundreds of kilos of TAGs produced at the second fermenter

- Acetate concentration 25-30 g/L after the first fermentation step

« Lipids concentration 50-100 g/L after the second fermentation step

« 150L of liquid paraffinic fuel from microbial oil hydroprocessing

« 100L of biodiesel produced from microbial oil esterification




Key results & conclusions

 Introduction of a new sustainable feedstock for HEFA plants, expanding the portfolio of
advanced feedstocks for marine and SAF

- 35.6% energy efficiency, 25.4% total C utilization

« Baseline MJSP: 1.83 €/L

« GHG emission savings: 48% to 86% compared to conventional fossil fuels
* Most environmental case: GHG emissions at 15.5 g CO2,,/MJ;

« New endeavor at demo scale for turning biogenic CO, into microbial oil for marine fuels
and SAF
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